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The low temperature (450–600�C) amorphous to tetragonal and tetragonal to
monoclinic phase transformations in zirconia nanoparticles, produced by an
aqueous sol–gel route, are analysed in terms of their changes of lattice parameters
and by using the phenomenological theory of martensitic transformation
(Bowles–Mackenzie theory) to explore whether or not those crystallographic
changes may be considered a martensitic transformation within the zirconia
nanoparticles.

Keywords: zirconia nanoparticles; martensitic transformation; tetragonal phase;
monoclinic phase; Bowles–Mackenzie theory

1. Introduction

Zirconia and its compounds have represented a very attractive family of materials for
a wide range of high-tech applications since the first modern reports on their properties
[1–5]. More specifically, the polymorphic nature of pure zirconia has received extensive
attention due both to the scientific phenomena behind the transformations involved and to
its potential engineering uses [4,5]. Pure zirconia exhibits three well-defined crystal-
lographic forms, namely the monoclinic, tetragonal, and cubic polymorphs. The
tetragonal phase, normally stable at high temperature for the case of coarse grain
ceramics, has been observed stable or metastable at room temperature [6]. Since Ruff and
Ebert’s [1] pioneering report in 1929 on the existence of a reversible tetragonal to
monoclinic martensitic transformation in pure zirconia, much effort has been dedicated to
understanding the details of this transformation. Today, for example, it is well known that,
at about 1170�C, a martensitic transformation from tetragonal to monoclinic symmetry
takes place in ambient condition [2,7]. In 1963, Wolten was the first to suggest that this
tetragonal–monoclinic transformation was martensitic in nature. He based his suggestion
on the similarity of the two crystallographic forms [8].

Calculations of the martensitic transformations have been carried out by
Bansal and Heuer [9], using the Bowles–McKenzie phenomenological theory [10], and
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Kriven et al. [11] developed calculations of a possible crystallographic transformation
mechanism on bulk, unconstrained zirconia crystals.

As for the effect of grain size, it has been observed that zirconia particles with different
sizes modify the phase fields of tetragonal, tetragonalþmonoclinic, and monoclinic
variants, with increased grain size, respectively [12,13]. In any case, the effect of
nanometre-sized grains and/or particles, seems to lead to interesting properties in ceramics
materials [14].

In this article, a series of calculus based on the Bowles–Mckenzie theory, by using the
lattice parameters experimentally obtained from zirconia nanoparticles synthesised ad hoc,
is presented, to explore whether or not the crystallographic changes reported by a number
of authors in zirconia nanoparticles [14–18] may be considered a martensitic transforma-
tion, as opposed to what is accepted in bulk zirconia.

2. Experimental

Zirconium carbonate paste was utilised in order to prepare a stock solution 1M in Zr from
distilled, deionised water for all the experimental work, according to the following
reaction scheme [15]:

2½Zr2ðCO3ÞðOHÞ2O2� þ 2NH4OHþH2O

! ðNH4Þ2½ZrðCO3Þ2ðOHÞ2� þ 3ZrðOH Þ4 þ nH2O

Portions of the 1M zirconyl stock solution were adjusted to pH values between 12 and 13,
by adding ammonia. A small amount of precipitate was redissolved upon heating. The
clear solutions were then refluxed and samples removed at various time intervals.
The samples were cooled down to room temperature and their pH recorded as a function
of viscocity until total solidification, after which, the resulting transparent specimens were
powdered and subjected to a heat treatment at up to 610�C. XRD patterns were recorded
at regular intervals between 200�C and 610�C in a Siemens D-5000 machine. A JEOL
100-CX apparatus, operating a 100 keV was utilised for obtaining micrographs of the
grinded samples, deposited onto C-coated Cu microscope grids.

3. Results and discussion

The relationship between viscosity and pH during the solidification process is summarised
in the plot of Figure 1, for three typical samples, to show the reproducibility of the process.
All the samples solidified between 300 and 500 cps and at pH¼ 9.58, approximately. The
highly transparent monoliths obtained (see Figure 2), consisted of 8 nm particles, on the
average, as can be appreciated in the TEM micrograph (Figure 3).

The series of X-ray diffractograms (Figure 4) show that, initially, a transformation
from amorphous to tetragonal structure occurs at 400�C, approximately. Then, between
400�C and 550�C the tetragonal phase develops continuously. At 600�C, the monoclinic
and tetragonal phases coexist.

By using Ito’s [19] method to analyse the diffraction data, summarised in Figure 4, for
tetragonal zirconia, the lattice parameters are: a¼ b¼ 0.4999992 nm, c¼ 0.5092005 nm,
whereas for monoclinic zirconia, the Ito’s method shows that the lattice parameters were:
a¼ 0.5110305 nm, b¼ 0.5231009 nm, c¼ 0.5270408 nm, and �¼ 96.884570.
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Figure 2. Photograph of the monoliths obtained.

Figure 3. TEM micrograph of the monoliths.
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Figure 1. Viscosity vs. pH during the solidification of the samples.
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Thus, a low temperature phase transformation can be described by a series of matrices,

according to Niggli’s [20] method.
Now, according to Bowles and McKenzie, for a martenstic transformation, the

principal axes are determined by the nonzero solutions of the equations:

fðAC0BÞðB�GBÞðBCAÞ � �2i ðA
�GAÞg½A;X� ¼ 0 ð1Þ

where (BCA) is the Bain [21] correspondence matrix between the initial phase (A) and the

final phase B, (AC0B) is the transpose of (BCA), (B*GB) and (A*GA) are the metrics for

the final and initial phases, respectively, A* and B* are the reciprocal lattices for the initial

and final phases, respectively.
Then, for the tetragonal to monoclinic phase transformation in zirconia, by using our

experimental data, Equation (1) becomes:

fðTC0MÞðM�GMÞðMCTÞ � �2i ðT
�GTg½T;X� ¼ 0 ð2Þ

where T is the tetragonal lattice and M is the monoclinic lattice.
The magnitudes and directions of the principal strains of the Bain deformation, �i, are

the eigenvalues and eigenvectors of Equation (2) in the procedure developed by Bowles

and McKenzie. Moreover, there are three types of lattice correspondences between the

tetragonal and monoclinic phases in pure zirconia [11], i.e.,

ðMCTÞa ¼

0 1 0

0 0 1

1 0 0

0
B@

1
CA ð3Þ

ðMCTÞb ¼

1 0 0

0 0 �1

0 1 0

0
B@

1
CA ð4Þ

Figure 4. X-ray diffractograms of samples after heat treatments at the temperatures shown.
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ðMCTÞc ¼

1 0 0

0 1 0

0 0 1

0
B@

1
CA ð5Þ

Further, the two metrics for tetragonal and monoclinic phases are

ðT�GTÞ ¼

at 0 0

0 bt 0

0 0 ct

0
B@

1
CA ð6Þ

ðM�GMÞ ¼

am 0 amcm cos�m

0 bm 0

amcm cos�m 0 cm

0
B@

1
CA ð7Þ

where at, bt, ct, and bm, cm are the experimentally obtained lattice parameters for the
tetragonal and monoclinic phases, respectively, and �m is the monoclinic angle.
Nevertheless, the lattice correspondences have different variants according to Bansal
and Heuer [9]. Table 1 shows all the possible variants for the lattice correspondences A,
B, and C, whereas Table 2 shows equations defining the principal deformations after
applying Equation (2). Table 3 shows the eigenvalues obtained after solving the equations
in Tables 2, and Table 4 shows the eigenvectors related to the eigenvalues obtained via
Equation (2) and shown in Table 2. Finally, Table 5 shows the normalised eigenvectors,
which occur in Table 4. It is worth noticing from Table 4 the fact that A4�A2, A3�A1,
B1�A2, B2�A3�A1, B3�A2, B4�B2, and C1�C2�C3�C4 and eigenvectors in
Table 4 is reduced to seven normalised eigenvectors only. We find three real eigenvectors,
which form an orthogonal set. The deformation matrix representing the Bain strain, which
converts the tetragonal zirconia lattice to the monoclinic zirconia lattice is given by:

MA1Tð Þ ¼

�1 0 0

0 �2 0

0 0 �3

0
B@

1
CA ¼

0:979111 0 0

0 1:027390 0

0 0 1:094098

0
B@

1
CA

Now, if a new orthonormal basis is defined, consisting of unit basis parallel vectors
[A1, v1]¼ [�0.600465, 0.799651, 0.000005], [A1, v2]¼ [�0.799646,�0.600472,�0.000002],
and [A1, v3]¼ [0.000033, 0.000015, 0.999999].

After the magnitudes and directions of the principal axes on the lattice deformation
have been obtained from the Equation (2), the locus of initial directions of all vectors,
which are not changed in length by the lattice deformation, known as the initial Bain cone,
can be obtained, as well [21].

Therefore, the Bowles–Mackenzie analysis of our experimental data, which on the
other hand, agrees with previous reports [22–24], indicated that the transformation can be
indeed regarded as a martensitic one.

Phenomenologically speaking, Hunter et al. [25] found that, for tetragonal zirconia,
the shift in oxygen � was simply related to the lattice parameters via the relation
�¼ 0.24(1� a2/c2)1/2, independently of the dopant. This is highly relevant to the present
work because the oxygen position and bond lengths can be determined by merely
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measuring the ratio of the lattice parameters, as obtained experimentally from X-ray
diffraction data. They assert that the coefficient in the expression would be 0.25 if one
assumed the atoms to be hard spheres, and hence the slight difference could be thought of
as a slight softening.

4. Conclusions

The atomic displacements involved in the transformation from tetragonal to
monoclinic zirconia nanoparticles were described in terms of the corresponding

Table 2. Equation defining the principal strains.

LC Equation defining the principal strains

A1 �16205.1829�6i þ 52038.7005�4i � 55469.9685�2i þ 19629.1201¼ 0

A2 �16205.1829�6i þ 52067.7940�4i � 55509.8984�2i þ 19629.1205¼ 0

A3 �16205.1829�6i þ 52038.7005�4i � 55469.9684�2i þ 19629.1201¼ 0

A4 �16205.1829�6i þ 52067.7940�4i � 55509.8984�2i þ 19629.1205¼ 0

B1 �16205.1829�6i þ 52067.7940�4i � 555609.8984�2i þ 19629.1205¼ 0

B2 �16205.1824�6i þ 52038.7005�4i � 55469.9683�2i þ 19629.1201¼ 0

B3 �16205.1829�6i þ 52067.7940�4i � 55509.8984�2i þ 19629.1205¼ 0

B4 �16205.1829�6i þ 52038.7005�4i � 55469.9685�2i þ 19629.1201¼ 0

C1* �16205.1829�6i þ 52029.2117�4i � 55467.6836�2i þ 19629.1199¼ 0

Note: LC¼ lattice correspondence, *C1¼C2¼C3¼C4.

Table 1. Different lattice correspondence matrices for zirconia.

Lattice correspondence
matrices 1 2 3 4

A

0 1 0
0 0 1
1 0 0

0
@

1
A 0 0 �1

0 1 0
1 0 0

0
@

1
A

0 �1 0
0 0 �1
1 0 0

0
@

1
A

0 0 1
0 �1 0
1 0 0

0
@

1
A

B

0 0 1
1 0 0
0 1 0

0
@

1
A �1 0 0

0 0 1
0 1 0

0
@

1
A

0 0 �1
�1 0 0
0 1 0

0
@

1
A

1 0 0
0 0 �1
0 1 0

0
@

1
A

C

1 0 0
0 1 0
0 0 1

0
@

1
A 0 �1 0

1 0 0
0 0 1

0
@

1
A

�1 0 0
0 �1 0
0 0 1

0
@

1
A

0 1 0
�1 0 0
0 0 1

0
@

1
A
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Table 3. Eigenvalues (derived from equations in Table 2 and Equation (2)).

LC �21 �22 �23 �1 �2 �3

A1 0.958659 1.055530 1.197050 0.979111 1.027390 1.094098
A2 0.935327 1.094740 1.182970 0.967123 1.046298 1.087644
A3 0.958660 1.055530 1.197050 0.979112 1.027390 1.094098
A4 0.935327 1.094740 1.182970 0.967123 1.046298 1.087644
B1 0.935327 1.094740 1.182970 0.967123 1.046298 1.087644
B2 0.958660 1.055530 1.197050 0.979112 1.027390 1.094098
B3 0.935327 1.094740 1.182970 0.967123 1.046298 1.087644
B4 0.958660 1.055530 1.197050 0.979111 1.027390 1.094098
C1 0.944731 1.094880 1.171040 0.971973 1.046365 1.082146

Note: LC¼ lattice correspondence.

Table 4. Eigenvectors (which emerge from eigenvalues in Table 3 via
Equation (2)).

EigenvalueþLattice correspondence Eigenvector related (not normalised)

�21þA1 [�38754.1, 51609.6, 0.381660]

�22þA1 [0.386163, 0.181412, 11599.2]

�23þA1 [�11970.6,�8988.99,�0.326233]

�21þA2 [�0.031736, 0.375581,�0.300095]

�22þA2 [0.517704, 0.308602,�1.000010]

�23þA2 [3.789110, 2.792750,�0.349092]

�21þA3 [�38754.1, 51609.6, 0.381660]

�22þA3 [0.386163, 0.181412, 11599.2]

�23þA3 [�11970.6,�8988.99,�0.326233]

�21þA4 [�0.031736, 0.375581,�0.300095]

�22þA4 [0.517704, 0.308602,�1.000010]

�23þA4 [3.789110, 2.792750,�0.349092]

�21þB1 [�0.031736, 0.375581,�0.300095]

�22þB1 [0.517704, 0.308602,�1.000010]

�23þB1 [3.789110, 2.792750,�0.349092]

�21þB2 [�38754.1, 51609.6, 0.381660]

�22þB2 [0.386163, 0.181412, 11599]

�23þB2 [�11970.6,�8988.99,�0.326233]

�21þB3 [�0.031736, 0.375581,�0.300095]
�22þB3 [0.517704, 0.308602,�1.000010]

�23þB3 [3.789110, 2.792750,�0.349092]

�21þB4 [�38754.1, 51609.6, 0.381660]

�22þB4 [0.386163, 0.181412, 11599.2]
�23þB4 [�11970.6,�8988.99,�0.326233]

�21þC1 (or C2 or C3 or C4) [�0.156817, 0.558056, 0.328837]

�22þC1 (or C2 or C3 or C4) [0.518393, 0.309187,�1.073200]

�23þC1 (or C2 or C3 or C4) [2.043030, 1.479210,�0.391010]
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changes of lattice parameters. According to the findings by various groups, the monoclinic
phase in zirconia would arise as a necessary consequence of the fact that Zr and O atomic

displacements constitute a common homogeneous deformation, followed by heteroge-

neous atomic displacements. On the other hand, and based on the Bowles–Mackenzie
theory, our mathematical analysis has shown that the tetragonal to monoclinic

transformation can indeed be regarded as a low-temperature martensitic transformation,
occuring thanks to the high stress concentrations, in turn due to the small particle size.

References

[1] O. Ruff and F.Z. Ebert, Ceramics of highly refractory materials, Anorg. Allgem. Chem. 180

(1929), pp. 19–41.

[2] Y.L. Zhang, X.J. Jin, Y.H. Rong, T.Y. Hsu, D.Y. Jiang, and J.L. Shi, The size dependence of

structural stability in nano-sized ZrO2 particles, Mater. Sci. Eng. A 438–440 (2006), pp. 399–402.
[3] B. Basu, Toughening of yttria-stabilised tetragonal zirconia ceramics, Int. Mater. Rev. 50 (2005),

pp. 239–256.
[4] F.A. Mumpton and R. Roy, Low-temperature equilibria among ZrO2, ThO2, and UO2, J. Am.

Ceram. Soc. 43 (1960), pp. 234–240.
[5] R.H.J. Hannink, P.M. Kelly, and B.C. Muddle, Transformation toughening in Zirconia-

containing ceramic, J. Am. Ceram. Soc. 83 (2000), pp. 461–487.

[6] S. Shukla and S. Seal, Mechanisms of room temperature metastable tetragonal phase stabilisation

in zirconia, Int. Mater. Rev. 50 (2005), pp. 45–64.
[7] B. Basu, J. Vleugels, and O. Van der Biest, Toughness tailoring of yttria-doped zirconia ceramics,

Mater. Sci. and Eng. A 380 (2004), pp. 215–221.
[8] G.M. Wolten, Diffusionless phase transformations in Zirconia and Hafnia, J. Am. Ceram. Soc. 46

(1963), pp. 418–422.

[9] G.K. Bansal and A.H. Heuer, On a martensitic phase transformation in zirconia (ZrO2)–II.

Crystallographic aspects, Acta Metall. 22 (1974), pp. 409–417.
[10] J.S. Bowles and J.K. Mackenzie, The crystallography of martensite transformations I, Acta

Metall. 2 (1954), pp. 129–138.
[11] W.M. Kriven, C.M. Wayman, D.A. Payne, H. Chen J.D. Bass, Displacive transformations in

ceramics, Air Force Office of Scientific Research.
[12] B. Wang, Some special characteristics of stress-induced martensitic transformations predicted by a

statistical model, Acta Mater. 45 (1996), pp. 1551–1556.

Table 5. Normalised eigenvectors (along the principal axes) for the principal
strains (calculated using Equation (2)).

EigenvalueþLattice
correspondence

Eigenvector related
(normalised)

�1þA1 [A1, v1]¼ [�0.600465, 0.799651, 0.000005]
�2þA1 [A1, v2]¼ [0.000033, 0.000015, 0.999999]
�3þA1 [A1, v3]¼ [�0.799646,�0.600472,�0.000002]
�1þA2 [A2, v1]¼ [�0.065863, 0.779547, 0.622870]
�2þA2 [A2, v2]¼ [0.443398, 0.264306,�0.856470]
�3þA2 [A2, v3]¼ [0.802773, 0.591681,�0.073959]
�1þC1 [C1, v1]¼ [�0.235303, 0.837360, 0.493418]
�2þC3 [C1, v2]¼ [0.421012, 0.251105,�0.871605]
�3þC2 [C1, v3]¼ [0.800424, 0.579529,�0.153191]

102 S. Jiménez et al.
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